免费论文查重: 大雅 万方 维普 turnitin paperpass

膨胀土隧道关键段安全施工技术与支护对策研究-设计

最后更新时间:2024-02-28 作者:用户投稿原创标记本站原创 点赞:7230 浏览:21779
论文导读:2cm厚0混凝土。(3)开挖左侧中台阶③:开挖进尺应根据初期支护钢架间距确定,最大不得超过1.0m,开挖后立即初喷3~5cm混凝土,及时进行喷、锚、网系统支护,接长钢架,在钢架拱脚以上30cm高度处,紧贴钢架两侧边沿向下倾角30°搭设大锁脚锚管,锁脚锚管和钢架牢固焊接,并架立中台阶竖壁钢架,复喷混凝土至设计厚度。(4)开挖左
摘要: 由于膨胀土质的一些特性,隧道施工时将对其稳定和安全产生影响,造成工程成本的增加等,因此膨胀土隧道开挖支护与施工具有不同的特点。膨胀土隧道由于地质原因和气候因素及人为因素的影响,自身稳定性很差。若选择不好开挖支护方式或开挖后支护不足,支护质量达不到要求,忽视重点薄弱部位的加固,都会影响隧道围岩稳定,造成塌方事故。因此,合理的施工过程对维护围岩稳定、支护结构安全、保证施工顺利进行以及缩短工期和节约投资等都有着极其重要的意义。本文理论联系实际,结合小河沟膨胀土隧道施工实践,对铁路膨胀土隧道变形特征与快速施工技术进行探析。
关键词: 膨胀土隧道; 膨胀土围岩; 快速施工技术; 支护对策
1009-8631(2012)04-0038-02
引言
小河沟隧道是太兴铁路线上第一长大特殊膨胀性土质隧道,其起止里程为DK73+754~DK75+557,全长1803m,隧道地质条件复杂,表层土体(由细腻的胶体颗粒组成)竖向节理和斜交剪切裂隙密集发育,断口面光滑。施工初期膨胀土体多表现为强胀缩性、裂隙性、超固结性、强度衰减、遇水崩解、风化特性。随雨季期强降水,致使膨胀土体吸水至充填土体裂隙,土体膨胀变形,衬砌结构失稳,尤其是洞口段拱脚处渗漏水严重。洞身膨胀土围岩接近甚至超过塑限,部分土体呈硬塑状,大部分呈软塑状,局部流塑状,稳定性差,极易坍塌掉块。针对这种围岩变形大,施工难度高的膨胀土质隧道,施工过程稍有不慎,会严重危及施工安全。
本文以小河沟膨胀土隧道为工程背景,经过对其施工过程关键位置成功掘进与支护的经验总结,得出一源于:7彩论文网大学生毕业论文www.7ctime.com
套适用于膨胀土隧道初期快速施工与支护的办法。实践证明,采取的施工技术措施是科学合理的,确保了隧道在安全有序的环境下施工,顺利解决了膨胀土隧道关键位置施工难,支护处理难的问题。
1 关键段失稳特征概述
所谓关键段,就是指系统由一种状态转变或演化为另一种状态所必须经历的一个阶段,在通过或接近这个阶段过程中,某些变量从连续逐渐变化最终导致系统状态的演化或转变,即在关键段附近,控制参数或条件的改变将从根本上影响或改变系统的结构与功能性质的现象。依托于本次膨胀土隧道的施工过程与膨胀土围岩的变形破坏特征,总结发现的关键段位置主要有洞口段、施工进洞75m与295m位置处。

1.1洞口段位置

小河沟隧道洞口于2010年6月24日进洞,进尺29米,掌子面施工至DK75+517时,由于2010年7月22日突遇季节性雨,土体增湿膨胀变形,于2010年7月23日诱发山体滑坡,洞口整体被掩埋。见图1。

1.2 施工进洞75m位置

小河沟隧道施工至2010年11月18日,施工里程为DK75+482位置时,掌子面出水突然加大,围岩整体向隧道净空滑塌,衬砌结构严重失稳。施工现场对掌子面进行封闭,稳定后实测出水量达到0.534m3/h。图2为破坏里程段衬砌结构裂纹图。

1.3施工进洞295m位置

小河沟隧道施工至2011年7月31日凌晨,其出口里程DK75+193~DK75+262.7段山体发生大面积坍陷、滑移(如图3、4)。塌陷滑移段位于黄土冲沟及浅埋偏压地段。在DK75+100~DK75+265段隧道左侧为黄土陡坡,高差约90m,其中DK75+248附近有冲沟一处。该段偏压较严重,线路右侧拱肩覆盖层较薄。
小河沟隧道在以上三个关键段的施工过程中,没有充分考虑到膨胀土地区施工的共性与场地土质的理化特性,按照设计施工方案(三台阶七步开挖法)施工,致使施工过程出现数次规模不等的塌方、冒顶和围岩大变形等不良地质问题。因此,在后续施工中,针对场地土质的工程特性,采用了创新性的三洞五步开挖法施工工艺,取得了良好的实际效果,降低了施工作业中的工程风险。
2 关键段安全施工技术与支护
隧道安全快速施工的前提是保证其紧邻围岩的稳定,而围岩的失稳破坏往往是由于围岩应力和变形调整导致的结果,坚硬围岩由于强度高、变形小、稳定性好,对施工的影响小,因此在坚硬围岩隧道施工中更多考虑的是如何方便施工、如何高效的发挥机械的效能,在台阶高度、长度的选取等决策中主要考虑的是方便开挖、出渣和支护。膨胀土隧道, 特别是地下水发育地区或季节性降水量较大区域的膨胀土隧道,应尽可能早的进行仰拱施工,使隧道衬砌尽早形成环向受力。隧道衬砌环向受力的形成是膨胀土隧道施工安全的重要保证[2-3]。而膨胀土围岩由于节理密集、增湿胀缩变形大、遇水崩解、稳定性差,开挖过程极易出现塌方等失稳现象,要实现膨胀土围岩隧道的安全快速施工,则必须更多地考虑施工过程中土体增湿围岩受力的调整以及围岩的变形规律,以确保围岩稳定。因此,根据膨胀土围岩变形的特征及其场地地质情况,合理选择开挖分部和开挖进尺,适时安排开挖和支护的各个工序,是膨胀土围岩隧道安全快速施工的理论基础。
对于膨胀土隧道的施工,水是隧道产生膨胀病害的主要根源,施工中需加强引排水,及时施做喷锚支护,封闭暴露的围岩,防止施工用水和水汽侵入岩土体,并切实按设计施做衬砌结构的防排水,防止地下水渗流对隧道结构造成破坏。加强施工用水管理,严禁积水浸泡软化围岩,造成围岩失稳。因此,结合场地膨胀土围岩的理化特性,采用了创新性的三洞五步开挖法施工工艺,辅以大锁脚、大格栅、大管棚辅以小导管注浆等辅助工法,在隧道施工进洞过程中取得了良好的实际效果。具体施工流程如图5。
其详细施工顺序为:
(1)上部弧形导坑①部开挖,在拱部超前支护后进行,环向开挖上部弧形导坑,预留核心土,核心土长度宜为3~5米,宽度宜为隧道开挖宽度的1/3~1/2。在拱部150°范围内施做十环10米长Φ108mm大管棚,并辅以3.5mm的Φ42双排小导管超前注浆,开挖循环进尺根据初期支护钢架间距确定,开挖后立即初喷3~5cm混凝土。开挖后及时进行喷、锚、网系统支护,架设钢架,钢架纵向连接钢筋增加一倍,间距为50cm,挂设双层钢筋网片,其主筋使用Φ32螺纹钢,构造筋使用Φ16螺纹钢,逐榀加设临时仰拱、竖向支撑及斜向支撑,在钢架拱脚以上30cm高度处,紧贴钢架两侧边沿向下倾角30°打设大锁脚锚管并与钢架焊接牢固,复喷混凝土至设计厚度。(2)开挖核心土②,架设上台阶临时仰拱I20a钢架,喷22cm厚0混凝土。
(3)开挖左侧中台阶③:开挖进尺应根据初期支护钢架间距确定,最大不得超过1.0m,开挖后立即初喷3~5cm混凝土,及时进行喷、锚、网系统支护,接长钢架,在钢架拱脚以上30cm高度处,紧贴钢架两侧边沿向下倾角30°搭设大锁脚锚管,锁脚锚管和钢架牢固焊接,并架立中台阶竖壁钢架,复喷混凝土至设计厚度。
(4)开挖左侧阶④:在滞后左侧中台阶2~3m后开挖左侧阶,开挖进尺应根据初期支护钢架间距确定,最大不得超过1.0m,开挖后立即初喷3~5cm混凝土,及时进行喷、锚、网系统支护,接长钢架,在钢架拱脚以上30cm高度处,紧贴钢架两侧边沿按下倾角30°搭设锁脚锚管,锁脚锚管和钢架牢固焊接,并架立阶竖壁钢架及阶左半幅临时仰拱,复喷混凝土至设计厚度。
(5)开挖右侧中阶⑤⑥:按照开挖左侧中、阶的方法进行开挖右侧中、阶,开挖进尺应根据初期论文导读:
支护钢架间距确定,最大不得超过1.5m,中、阶错开2~3m,开挖后立即初喷3~5cm混凝土,及时进行喷、锚、网系统支护,接长钢架,在钢架拱脚以上30cm高度处,紧贴钢架两侧边沿向下倾角30°搭设锁脚锚管,锁脚锚管和钢架牢固焊接,并架立阶右半幅临时仰拱钢架,复喷混凝土至设计厚度。
(6)开挖隧底⑦:每循环开挖进尺长度宜为2~3m,开挖后及时施作仰拱初期支护,并及时施作仰拱。
(7)施工中加大预留沉落量,拱部预留40cm沉落量,边墙预留30cm沉落量。
通过对革新性三洞五步开挖法与传统三台阶七步开挖法支护结构与参数改变下量测数据的对比(如图7),终使膨胀土围岩体积与应力的反复变化对衬砌结构的连续性破坏降到了最低(如图6),亦说明了我们所采取的支护参数和创新性施工工艺是科学合理的。
3 安全施工与支护技术要点总结

3.1突出天然含水量的影响

膨胀土遇水膨胀的决定性本质因素是组成膨胀土的特殊的物质成分和结构特征,而水则是直接导致膨胀变形的重要因素。一旦土体增湿膨胀,即当土中原有的含水量与土体膨胀所需的含水量相差愈大时,则遇水后土体膨胀变形愈大,而失水后土体收缩愈小。如此反复,会对衬砌结构的稳定性造成不可预估的影响。

3.2注重基底及二衬的结构强度

针对以往隧道底部出现的超挖、欠挖等造成的不均匀沉降、高速列车运行过快对底部附加应力的增加,以及列车长期运行的振动作用,对膨胀土隧道基底及二衬要提前、及时施做。基底宜采用仰拱结构,喷射厚度要大于拱墙厚度;二次衬砌要减少大跨度混凝土结构造成的收缩裂缝。同时增大初次衬砌与二衬的结构厚度。

3.3调整围岩预留变形

隧道内的预留变形量是指围岩荷载引起的下沉量或变形量,也指比设计位置预先提高的量。预留变形量的大小,受地质、开挖方式、支护构造和材质、开挖之后到衬砌之前经过的时间等因素控制,所以宜结合实际情况,采用适合于现场条件的最小预留变形量。隧道总变形以预留变形量控制为主,同时加强肉眼观测,确保洞内施工安全。
考虑到膨胀土体吸湿后其体积的变化与土体内部吸力的丧失、衬砌结构的受力变化,施工场地的预留变形量不能只是针对钢支撑做保险计算,在衬砌施工时,为防备模板与衬砌结构的整体下沉或内挤,需要将预留量做适当放大。

3.4强化工序流程衔接

膨胀土隧道施工过程中, 应做好各工序间的有效衔接工作。开挖完成后宜及时组织钢架、超前支护、钢筋网、喷射混凝土、系统锚杆、锁脚锚管施工,避免因膨胀土围岩暴露时间过长或侵水膨胀而导致变形过大,增加治理的难度与费用。同时,考虑到膨胀土围岩的变形是随时间变化的一个过程,膨胀应力是这种变化的根本原因,施工过程宜加强工序的有效衔接,缩短土体增湿膨胀变形破坏所需时间,即要突出体现一个“快”字,规范施工管理,强化流程衔接。

3.5加强围岩变形监控

监测量测是“新奥法”施工的核心技术之一,尤其是在软弱围岩及特殊性土施工地段,通过现场监控量测,监视围岩变化状态,了解初期支护受力情况,确保施工安全,同时掌握围岩变形规律,确认或修改支护设计参数与施工顺序,合理安排施工工艺。
结论
本文通过对太兴铁路小河沟膨胀土隧道施工实践的总结,较详细的阐述了关键段位置附近膨胀土隧道洞口端与洞内的快速施工技术与支护对策,总而言之,膨胀土为我国较特有的土质,工程中有着广泛的地质灾害[5]。隧道工程是目前控制交通路线紧7彩论文网论文下载中心www.7ctime.com
张局面的有效方式,也是国家投资的重点项目。为了保证隧道结构的使用性能,在施工期间需要注意对“关键段位置”问题的处理,通过合理的施工技术与快速支护方案来增强隧道的使用性能。
参考文献:
黎锡贵.浅谈膨胀性土隧道洞口段快速施工技术[J].河北企业,2007:72-72.
郝中海,李文杰.膨胀土隧道施工技术要点[J].公路交通科技, 2002,19(6):102-104.
[3] 翟建国.膨胀土隧道施工技术[J].铁道建筑技术,2009(1):149-152.
[4] 宋磊.膨胀土隧道塌方成因分析及其技术处理[J].长沙铁道学院学报:社会科学版,2011,12(3):211-212.
[5] 刘建友,赵勇.软弱围岩隧道安全快速施工技术研究其技术处理[J].隧道建设,2011(31):381-387.