免费论文查重: 大雅 万方 维普 turnitin paperpass

探究开关电源多路单端反激式开关电源设计学术

最后更新时间:2024-04-06 作者:用户投稿原创标记本站原创 点赞:7314 浏览:23411
论文导读:0V,C8取220μF/35V。第二级经LC滤波使不满足纹波要求的电压再次滤波。输出滤波电容器不仅要考虑输出12下一页
摘 要: 设计了一种基于TOP223Y多路输出单端反激式开关电源。采用TOP Switch系列三端高频单片开关电源芯片,配合由TL431、PC817A组成的反馈系统对电路进行分析。设计出了一种输出为+5 V/3 A,+12 V/1 A不同稳压调整权重分别为0.6,0.4的AC/DC开关电源。实验结果表明,该开关电源不但效率高,纹波小,而且输出精度高和稳定性强。
关键词: 开关电源; 单端反激; 高频变压器; 双反馈
1004?373X(2013)14?0162?04
Design of multi?channel switching power supply with single?ended flyback
HU Zhi? 1, WANG Gai?yun1, WANG Yuan 2
(1. Guilin University of Electronic Technology, Guilin 541004, China;2. Shandong Huayu Vocational College, Dezhou 253034, China)
Abstract: A TOP223Y?based switching power supply with multi?channel output single?end flyback AC/DC module was designed. Peripheral circuits are analyzed by TOP Switch series single?chip switching power supply chip and the feedback system composed of TL431 and PC817A. The AC/DC switching power supply whose voltage stabilization adjusting weight is 0.6 and 0.4 with the outputs of +5V/3A and +12V/1A was designed. The experimental results show that the switching power supply has high efficiency, all ripple, high output accuracy and high stability.
Keywords: switching power supply; single?ended flyback; high?frequency tranormer; double feedback
单片开关电源自问世以来,以其效率高,体积小,集成度高,功能稳定等特点迅速在中小功率精密稳压电源领域占据重要地位。美国PI公司的TOPSwitch系列器件即是一种新型三端离线式单片高频开关电源芯片,开关频率fs高达100 kHz,此芯片将PWM控制器、高耐压功率MOET、保护电路等高度集成,连接少许器件即可使用[1?2]。本文介绍了一种基于TOP223Y输出为+5 V/3 A,+12 V/1 A的单端反激式开关电源的设计原理和方法。
1 设计原理
开关电源是涉及众多学科的一门应用领域,通过控制功率开关器件的开通与关闭调节脉宽调制占空比达到稳定输出的目的,能够实现AC/DC或者DC/DC转换。
TOP223Y共三个端:控制极C、源极S、漏极D。因只有漏极D用作脉宽调制功率控制输出,故称单端;高频变压器在功率开关导通时只是将能量存储在初级绕组中,起到电感的作用,在功率开关关闭时才将能量传递给次级绕组,起变压作用,故称反激式。
图1 开关电源控制原理框图
电路功能部分主要由输入/输出整流滤波、功率变换、反馈电路组成。工作原理简述为:220 V市电交流经过整流滤波得到直流电压,再经TOP223Y脉宽调制和高频变压器DC?AC变换得到高频矩形波电压,最后经输出整流滤波得到品质优良的直流电压,同时反馈回路通过对输出电压的采样、比较和放大处理,将得到的电流信号输入到TOP223Y的控制端C,控制占空比调节输出,使输出电压稳定。
2 设计要求
设计作为某智能仪器的供电电源,具体的参数要求如下:交流输入电压最小值:VACMIN=85 V;交流输入电压最大值:VACMAX=265 V;输出:U1:+5 V/3 A;U2:+12 V/1 A;输出功率:Po=27 W;偏置电压:VB=12 V;电网频率fL=50 Hz;开关频率fs=100 kHz;纹波电压:小于100 mV;电源效率:η大于80%;损耗分配因数Z为0.5;功率因数为0.5。
3 设计实例
本设计是基于TOP223Y的多路单端反激式开关电源,性能优越,便于集成。电路原理如图2所示,可分为输入保护电路、输入整流滤波电路、钳位保护电路、高频变压器、输出整流滤波电路、反馈回路、控制电路7个部分。
图2 开关电源电路原理图

3.1 输入保护电路

由保险丝F

1、热敏电阻R摘自:毕业论文提纲www.7ctime.com

T和压敏电阻RV组成,对输入端进行过电压、过电流保护。
保险丝F1用于当线路出现故障产生过电流时切断电路,保护电路元器件不被损坏,其额定电流IF1按照IF1>2IACRMS选择3 A/250 VAC保险丝,其中IACRMS为原边有效电流值。热敏电阻RT用以吸收开机浪涌电流,避免瞬间电流过大,对整流二极管和保险丝带来冲击,造成损坏,加入热敏电阻可以有效提高电源设计的安全系数,其阻值按照RRT1>0.014VACMAX/IACRMS选择10D?11(10 Ω/2.4 A)。压敏电阻RV能在断开交流输入时提供放电通路,以防止大电流冲击,同时对冲击电压也有较好钳位作用。RV选取MY31?270/3,标称值为220 V。 源于:毕业论文致谢范文www.7ctime.com
则VR1=22 V,VR2=57.1 V,VD2,VD3,VD4均选择MBR1060CT,最大反向电压60 V,最大整流电流10 A。RC串联谐振可以消除尖峰脉冲,防止二极管击穿。
第一级滤波电容的选择由式(18)确定:
(18)
式中:Iout是输出端的额定电流,单位为A;Dmin是在高输入电压和轻载下所估计的最小占空比(估计值为0.3);V(PK?PK)是最大的输出电压纹波峰峰值,单位为mV。计算得出后考虑阈值C6取100 μF/10 V,C8取220 μF/35 V。
第二级经LC滤波使不满足纹波要求的电压再次滤波。输出滤波电容器不仅要考虑输出论文导读:
纹波电压是否可以满足要求,还要考虑抑制负载电流的变化,在这里可以选择C7取22 μF/10 V,C9取10 μF/35 V。C5取经验值0.1 μF/25 V。输出滤波电感根据经验取2.2~4.7 μH,采用3.3 μH的穿心电感,能主动抑制开关噪声的产生。为减少共模干扰,在输出的地与高压侧的地之间接共模抑制电容C15。

3.6 反馈回路设计

开关电源的反馈电路有四种类型:基本反馈电路、改进型基本反馈电路、配稳压管的光耦反馈电路、配TL431的光耦反馈电路。本设计采用电压调整率精度高的可调式精密并联稳压器TL431加线形光耦PC817A构成反馈回路。
TL431通过电路取样电阻来检测输出电压的变化量ΔU,然后将采样电压送入TL431的输入控制端,与TL431的2.5 V参考电压进行比较,输出电压UK也发生相应变化,从而使线性光电耦合器中的发光二极管工作电流发生线性变化,光电耦合器输出电流。
经过光电耦合器和TL431组成的外部误差放大器,调节TOP223Y控制端C的电流IC,调整占空比D(IC与D成反比),从而使输出电压变化,达到稳定输出电压的目的。
对于电路中的反馈部分,开关电源反馈电路仅从一路输出回路引出反馈信号,其余未加反馈电路。这样,当5 V输出的负载电流发生变化时,定会影响12 V输出的稳定性。
解决方法是给12 V输出也增加反馈电路。另外,电路中C10为TL431的频率补偿电容,可以提高TL431的瞬态频率响应。R5为光电耦合器的限流电阻,R5的大小决定控制环路的增益。电容器C13为软启动电容器,可以消除刚启动电源时芯片产生的电压过冲。
下面主要是确定R4~R8的值:
按照应用要求,对5 V电源要求较高,但也要兼顾12 V电源,权衡反馈量,将R7,R8的反馈权值均设置为0.6,0.4,各个输出的稳定性均得到保障和提高。
只有5 V输出有反馈时,如R4,R7取值均为10 kΩ,此时电流=250 μA,分权后,R7分得150 μA、R8分得150 μA。根据TL431的特性知,Vo,VREF,R7,R8,R4之间存在以下关系:
(19)
(20)
式中:VREF为TL431参考端电压,为

2.5 V;Vo为TL431输出电压。根据电流分配关系得(单位:kΩ):

(21)
(22)
又由电路可知 :
(23)
式中:VF 为光耦二极管的正向压降,由PC817技术手册知,典型值为

1.2 V。先取R5=390 Ω,可得R6=139 Ω,取标称值150 Ω。

3.7 控制回路

由电容C7和电阻R12串联组成。C9用来滤除控制端的尖峰电压并决定自动重启动时序,并和R12一起设定控制环路的主极点为反馈控制回路进行环路补偿。由数据手册知,C9选择47 μF/25 V的电解电容,当C9 =47 μF时,自动重启频率为1.2 Hz,即每隔0.83 s检测一次调节失控故障是否已经被排除,若确认已被排除,就自动重启开关电源恢复正常工作。R12取

6.2 Ω。

4 实验结果及分析
根据以上的设计方法和规范,设计出的一种基于TOP223Y双路+5 V/3 A,+12 V/1 A输出的反激式开关电源。在宽范围85~265 VAC的输入范围下对其性能进行了测试,如表1所示。
表1 开关电源输入性能测试数据(部分)
由以上选取的实验数据得出,+5 V/3 A(反馈权重0.6,负载500 Ω)输出的电压调整率为SV = ±0.18%,输出的纹波电压为39 mV,输出的最大电流为

3.2 A;

+12 V/1 A(反馈权重0.4,负载750 Ω)输出的电压调整率为SV = ±0. 3%,输出的纹波电压为68 mV,输出的最大电流为

1.10 A。

该电源在满载状态时,功率可达27.6 W,最大占空比为0.60, 电源效率为8

3.1%,开关电源具有良好的性能,满足应用要求。

6 结 语
本开关电源的设计,芯片的高度集成化,电路设计简单。电源的性能通过参数的调节仍有提升的空间。双输出双反馈异权重的设计使开关电源的更加实用灵活,不同的保护电路的设计,使电源的实用更加安全可靠,该电源在实际应用中表现良好。
参考文献
杨立杰.多路输出单端反激式开关电源设计[J].现代电子技术,2007,30(3):24?31.
马瑞卿,任先进.一种基于TOP224Y 的单片开关电源设计[J].计算机测量与控制,2007,15(2):225?227.
[3] 潘腾,林明耀,李强.基于TOP224Y芯片的单端反激式开关电源[J].电力电子技术,2003(2):20?22.
[4] 赵祥,方方,马柯帆,等.基于TOP261YN芯片的多路输出单端反激式开关电源的设计[J].核电子学与探测技术,2010(11):1529?1532.
[5] 戚本宇.多路输出单端反激式开关电源设计[D].淄博:山东理工大学,2012.
[6] 房雪莲.基于UC3845的非隔离反激式输出可调开关电源设计[J].现代电子技术,2012,35(16):174?177.
[7] 陈影,付少波,何惠英,等.基于反激式开关电源升压电路的改进[J].电子科技,2010(2):61?64.
[8] 姜欣欣,金永镐,陈影.基于MOS分流技术的反激式DC?DC变换器的设计[J].电子科技,2009(2):69?72.