免费论文查重: 大雅 万方 维普 turnitin paperpass

浅谈变电站关于变电站保护室电磁兼容管理原则深思科技

最后更新时间:2024-03-30 作者:用户投稿原创标记本站原创 点赞:18112 浏览:74423
论文导读:
摘要:本文以通俗的方式进行描述,通过阐述电磁兼容基本概念,分析变电站电磁兼容环境,简述继电保护和综合自动化设备的电磁抗扰要求,以及展示对无线设备辐射功率的实测数值,目的是为相关人士提供技术层面参考,讨论保护室内应用无线设备的可能性。
关键词:电磁兼容 变电站 保护室 EMC EMI 继电保护
1007-9416(2013)08-0196-03
1 背景分析
由于早期继电器保护设备对电磁环境敏感,且大功率对讲机存在造成继电器保护装置误动的可能性,因此管理层本着“安全第一、预防为主”的原则,严格控制(通常的做法是禁止)无线设备在变电站保护室内的使用,甚至不允许将手机带入主控室。该管理方式对保护室内诸如设备调试等工作带来一定程度的不便,尤其随着智能电网的建设,变电站数据采集节点不断增加和物联网的持续应用,无线技术不断地向生产领域贴近,甚至偷偷的溜进了应用领域,生产工作对其慢慢产生依赖性,但是由于现行管理原则的限制而无法名正言顺的实行。
需求发展了技术,如传统上对电磁干扰敏感的医院和航空领域,都陆续放松对无线设备的限制措施,但是电力行业除用电网迫不得已,输电网对无线技术的应用依然犹抱琵琶半遮面。关于现行的电磁兼容管理原则是否合理的问题,很多人都存有疑问,但是综自和保护专业由于技术领域的问题无法对这个问题进行讨论,通信专业由于没有这个领域的话语主导权并且需求不明显,也懒得去碰这条线。但是需求之所在,总需要好好琢磨一下。这个问题如果解决了,可以极大的提高各种通信业务保障的灵活性,促进生产效率的结合。
很多研究和论文都是研究如何在变电站的电磁干扰环境中如何保障通信可靠性的问题,极少有文章讨论无线信号对继电保护和综自设备产生干扰,尤其是是在微机保护使用之后,比如你是否会担心你打手机、用WIFI会干扰你的电脑正常工源于:毕业设计论文格式www.7ctime.com
作?办公电脑尚且不会担心,反过来担心工控机,仅仅是因为生产中的重要性不一样,这个理由难免有些牵强。
2 电磁干扰的基本概念
如图1所示,变化的电场产生变化的磁场,反过来变化的磁场又产生变化的电场,循环往复形成了电磁场并向四周传播。电磁波的存在远超人类的发展时间,雷电、太阳黑子爆发都能产生强烈的电磁波造成对电子设备的干扰,此外地球磁场、静电、星光都是电磁波,只不过影响小一些。在电磁能广泛应用的今天,大量应用着诸如通信、广播、家用电器、雷达、电脑等电子器件,在正常运行的同时也向外辐射电磁能,可能会对其他电子设备产生危害,这就是电磁干扰。我们生活和工作的空间中充满了电磁波,虽然看不到摸不着,但是确实是客观存在,重要做的是提高抗干扰能力,而不是一味的限制某种设备的使用,毕竟红头文件无法限制太阳黑子的爆发,政策法规也不能禁止宇宙射线风暴进入大气层。
电磁干扰的传播途径分为传导骚扰和辐射骚扰,传导骚扰即是基于线缆的有线方式的电磁能传播,严格来讲不能算是电磁波,比如电焊机等大功率设备造成的电压瞬变可沿着电源线进入设备内部,雷电通过信号电缆传导入设备内部等,均会干扰电子设备的正常运行;辐射骚扰是电磁波在空间传播过程中,设备的外壳、外部线缆起到天线的作用,耦合了电磁波的能量,产生变化的电信号——噪声,传导入设备内部后干扰了电子器件的工作,是本文所要讨论的干扰形式。
辐射骚扰对电子设备的干扰强度主要取决于两个方面,一是设备所处环境中电磁场本身的强度,1000V/M的电场强度对设备的影响肯定大于10V/M的环境;二是取决于设备对电磁波的感应程度,也就是耦合性高低。类似不同形状的电视天线能接受不同频段的节目一样,接收体形状、材料等性质决定电磁波对其影响的大小,通过特定的外形设计和外涂层选择隐形飞机达到减小雷达波反射的目的,电子设备可以采用同样的方式电磁波对其影响,这就涉及到一个产品电磁兼容(EMC)设计方面的问题。
3 变电站内电磁环境分析
如图2所示,变电站内同时运行着多种电压等级、多频率的线缆和设备,各种类型的电磁波交织在一起,构成了一个复杂的电磁环境,无法用简单的数学模型进行准确描述,一般通过实地测量来进行定性的分析。典型的为美国电力科学研究院,对变电站内电磁兼容问题进行了长达30年的持续研究,其成果表明高压开关操作干扰、一论文导读:
次系统短路故障干扰、雷电干扰对电子设备影响最大。变电站内断路器、隔离开关等一次设备在操作时,会产生一系列的电磁干扰,这些干扰会通过各种耦合进入到二次回路;一次系统短路故障时,在站内架空导线和接地网上会流过很大的短路电流,并在二次电缆周围产生很强的空间磁场,会对二次设备造成较大的干扰;雷电可以以耦合、传导、辐射等形式侵入二次设备。
由于电磁波首先要在设备外壳和连接线上产生感应电压或电流,通过端口进入设备内部才能影响电子器件的正常运行,在最终的干扰方式上和传导骚扰是同样的。因此,由上所述,一次系统的操作,能够产生千伏/米数量级的电场强度的电磁干扰,会通过传导和辐射的方式直接耦合到设备内部。有研究表明,即使在无操作的正常环境中,保护室内的电场强度长期保持在4V/M以上,特殊时刻会瞬间远超这个数值。此外,电视广播、无线广播、卫星通信、手机基站甚至太阳黑子等不可控的电磁信号产生的干扰,是设备设计阶段即可以预见并加以防治的,其造成的影响相比站内干扰源要次之。
4 继电保护和综自系统的电磁兼容性能
变电站内保护室内主要的电子设备包括继电保护装置、综合自动化装置以及通信设备,其中通信设备由于数字化程度高,器件密度大,处理信号速率高(G级别速率),其产品自身设计制造时即考虑了较高的电磁兼容性能,可以承受较强的电磁干扰而不影响正常运行。不考虑各种标准文件,简单的想一下即可得知,离手机天线辐射最近的电子器件恰恰就是手机自身,虽然手机电路由于器件密集易受感染。因此常常被看做干扰源的通信设备自身反而抗扰能力最强,也就不存在对手机等无线设备的使用限制。除此之外,保护室内严格限制无线设备使用的原则,主要是考虑的是继电保护和综自系统,即使多年的技术进步和发展,很多运维人员对设备的电磁兼容性能所知甚少,传统上依然认为它们是电磁敏感型设备。 继电保护设备及自动化设备对电网正常、稳定运行的重要作用毋庸多言,由于其工作电磁环境恶劣,因此各厂家均将提高产品的电磁兼容性能作为产品设计的一个关键因素。国际电工委员会IEC标准TC95技术委员会成立了专门的电磁兼容研究工作组,制定了一系列的相关标准,至今所颁布的标准中有一项通用标准、一项电磁发射标准和八项抗扰度标准,即IEC 60255系列标准,我国相应的继电保护标准化组织已将相应的国际标准转化为国家标准,即GB/T 14598系列标准;自动化电磁兼容标准为IEC 60870-2-1,对应我国标准为GB/T 15153.1。规定了设备在1MHz脉冲群干扰实验、静电放电试验、辐射电磁场骚扰试验、电快速瞬变/脉冲群抗扰度试验、浪涌抗扰度试验、射频场感应的传导骚扰抗扰度试验、工频抗扰度试验等方面的电磁兼容性能。除此之外,电力行业还编制了电力行业标准“DL/Z 713—2000 500kV变电所保护和控制设备抗扰度要求”。
以上这些标准都从各个方面对继电保护和自动化设备的抗电磁干扰能力提出了严格的要求,其模拟环境要严酷于可预想情况,其产生耦合的线缆和接口要多于设备正常配置、其规定的正常工作的限制要高于实际应用情况。总之,电磁兼容测试环境的要求是要高于设备正常应用环境的,按照标准规定,在宽频范围内(80——1000MHz)设备测试环境的严酷等级为3级,即电场强度为10V/M。通常将电磁环境的严酷等级分为3级:为低辐射环境,如离电台、电视台1km以上,附近只有小功率移动电话在使用。2级为中等辐射环境,如在不近于1m处使用小功率移动电话,为典型的商业环境。3级为较严酷的辐射环境,如附近有大功率发射机在工作,为典型的工业环境。而为了在制造符合测试环境的电场强度,一般场强、试验距离与功率放大器的关系见表1,一般来讲EMC测试中产生10V/M场强至少需要100W以上功率的放大器,这是一个相对较大的辐射强度了。
5 手机等无线设备的电磁辐射探讨
5.1论文导读:进行傅里叶展开等频域的换算,具体公式不谈,结果是不是所有能量都会变换到指定频域,体现在实际中就是虽然发射功率足够大,但是不一定能够产生同等的干扰能力。因此,世界各国的标准化组织对无线设备电磁辐射规定都是对低频域设置的。表2是各组织在两个手机常用频点上的功率密度的限制值,此处需要说明一个问题,虽然通过功率密度
行业标准对电磁辐射的要求
如前文所述,电磁辐射能够对设备产生的影响,主要方面是取决于设备本身对电磁波的耦合程度,而能够耦合电磁波的设备外壳和端口引线起到的是一个天线的作用。众所周知,天线对电磁波是有选择性的,不同频率和不同极化方向的电磁波在天线上产生的感应电动势是不同的。继保和自动化设备的电磁兼容测试选择的是80M——1000Mhz这个频率范围,这说明其它频率的电磁波干扰要折合到这个频率范围来计算,这涉及到对信号进行傅里叶展开等频域的换算,具体公式不谈,结果是不是所有能量都会变换到指定频域,体现在实际中就是虽然发射功率足够大,但是不一定能够产生同等的干扰能力。因此,世界各国的标准化组织对无线设备电磁辐射规定都是对低频域设置的。表2是各组织在两个手机常用频点上的功率密度的限制值,此处需要说明一个问题,虽然通过功率密度和电场强度的换算关系式可以得出,约265μW/cm2即可在相应位置产生10V/M的电场强度,看起来门限不高,但是功率密度是辐射功率在单位面积上产生的(cm2)分配,如果半径为1米的话,球面积为125600cm2,按照26μW/cm2计算,不考虑路径中的损耗,则该层功率合计为33W,因此,实际测试环境考虑到各种损耗和天线等因素,一般选择250W的功率放大器。(如表3)

5.2 WIFI设备辐射功率的探讨

目前个人广泛使用的无线设备主要是WIFI路由器和手机。对于WIFI设备其工作频率在2.4G和5G,也就是2400MHZ和5000MHZ这两个波段,其设计的初衷是为了覆盖源于:论文的标准格式范文www.7ctime.com
100米之内的范围,所以辐射功率较小。根据有关机构的测试,在2英尺(0.6米)的距离上,WIFI设备所能产生的辐射,大概是2μW/cm2,即每平方厘米百万分之一瓦特。相比而言,由电视、收音机这些设备工作时产生的辐射,大概是1μW/cm2,所以IEEE802.11b设备的辐射只不过是这个数据的2倍。我国无线电管理委员会的规定,无线局域网产品的发射功率,不能大于10mW,所以我们一般从市场上买到的无线路由器,其配置菜单对功率的调节最大就是10mW。由此看来,WIFI设备辐射的电磁场干扰,对继保和综自设备抗扰性来说是微乎其微的。在当前IP业务泛滥的情况下,很多新型接入业务都依赖于WIFI设备的部署,这也是在各种安全管控的高压态势下,却屡禁不止的一个原因。为了更好的发展,我们要以积极的态度研究WIFI设备在变电站内的应用,而不是简单的一禁了之。

5.3 手机辐射功率的探讨

除WIFI外,我们最常用的移动无线设备就是手机了。当前我国手机网络主要分为2G和3G两种。2G网络的代表为G制式,3G网络都是基于CDMA技术的。G手机工作在800M和1800M两个频段上,对于G900M发射功率分为不同的级别,每个功率级别差2dB,手机最大发射功率级别是5(33dBm,2W),最小发射功率级别是19(5dBm,3.2mW);对于G1800M最大发射功率级别是0(30dBm,3W),最小发射功率级别是15(0dBm,1mW)。CDMA IS-95A规范对手机最大发射功率要求为0.2W-1W(23dBm-30dBm),实际上目前网络上允许手机的最大发射功率为23dBm(0.2W),规范对CDMA手机最小发射功率没有要求。
在实际通信过程中,在某个时刻某个地点,手机的实际发射功率取决于环境,系统对通信质量的要求,语音激活等诸多因素,会随着与基站之间的链路测算进行实时调整。手机与系统的通信可分为两个阶段,一是接入阶段,二是话务通信阶段。对于G系统,手机在随机接入阶段没有进入专用模式以前,是没有功率控制的,为保证接入成功,手机通常以最大发射功率。在专用信道分配后,手机会根据基站的指令调整发射功率,通常每60ms调整一次,幅度是一个级别(2db)。对于CDMA系统,手机在随机接入状态下,会根据接收到的基站信号电平估计一个较小的值作为初始发射功率,如果没有得到基站的应答信息,会增加发射功率,直到收到基站的应答或者到达设定的最多尝试次数为止。在通话状态下,每1.25ms基站会向手机发送一个功率控制命令信息,命令手机增大或减少发射功率,幅度为1dB(10倍)。
图3和图4为某机构对CDMA和G在常见环境下的发论文导读:
射功率分布图,表4为10种典型手机发射功率的实测值。CDMA手机的线性平均发射功率为2.4dBm(1.72mW),以最大功率(23dBm,0.2W)发射的概率为0.2%;G手机的线性平均发射功率为28.9dBm(773mW),以最大功率(2W)发射的概率为21.8%。表4为某机构对十款常见手机的辐射功率的测试结果。从中可以看出,虽然G手机的发射功率偏大,但是考虑到4G时代的来临,2G手机制式已经逐步退出历史舞台,现在普遍使用的基于CDMA的3G制式,手机的辐射功率将小得多,低于我们电磁测试环境要求的限值。
6 结语
本文的编写不是学术型目的,而是基于为相应管理者提供参考,因此内容尽量通俗,,文章对公式的应用和概念的描述并非十分严格,目的是为了易于非专业人士理解所要阐述的思想。本文所要说明一个论点就是要深入考虑变电站保护室内对无线设备的禁用原则,将研究重点转到如何在复杂和恶劣的电磁环境下保证设备正常运行,以及对入网设备进行相应的检测,要让设备适合我们的应用,而不是我们来适合设备。随着智能电网的建设和物联网的发展,无线业务的应用趋势势不可挡,我们要积极的探索适合变电站内系统的无线模式,以此来跟上社会潮流,提高工作效率,反而可以进一步提高电网的安全可靠性。
参考文献
邹澎.电磁兼容原理、技术和应用.清华大学出版社,2007.
Theodore Frankel S.Rappaport[美].无线通信原理与应用.电子工业出版社,2007.
[3]王海青.电磁辐射环境研究[J].航空电子技术,2001(01).
[4]徐勇,吕英华,张洪欣.电力线通信中的电磁辐射仿真研究[J].滨州学院学报,2006(3).
[5]张海黎.一种简便实用的空间电磁强度仿真分析方法[J].航天电子对抗,2012(4).