免费论文查重: 大雅 万方 维普 turnitin paperpass

浅析基于模型纯电动汽车传动系统能量经济性和碳排放要求

最后更新时间:2024-03-25 作者:用户投稿原创标记本站原创 点赞:13509 浏览:51062
论文导读:llengesandsolution26-291.2.5Newenergyvehicles29-301.3ResearchObjectivesandContributions30-331.3.1Objectiveorthepureelectrictwo-wheel-drivevehicle31-321.3.2Contributions32-331.4ThesisOrganization33-34Chapter2OVERVIEWOFEVPOWERTRAINTOPOLOGIES34-472.1IntroductionofFeasibleE
摘要:纯电动汽车作为一种新的出行工具选择对于能量安全和多样化有重要作用。然而,有限的行驶里程对纯电动的广泛运用形成了巨大阻碍。此探讨针对二驱纯电动汽车的传动系统进行浅析,以试图延长电动汽车的行驶里程。纯电动汽车拓扑结构设计包括两方面:传动系统零部件的选择和零部件的布置方式。为评价不同的传动系统拓扑结构,根据中国目前的技术水平,本探讨定义了两个新的评价指标:能量经济性和生命周期碳排放。本探讨建立了电动汽车各种拓扑结构的工程模型,并对模型进行了验证。对各种传动系统拓扑结构进行优化后获得了最佳的性能体现。此外,本探讨对影响汽车系统性能的影响因子进行了敏感性浅析,分别选择汽车设计参数车重和汽车动力性能参数最高车速的影响。结果显示1)双轮毂电机无减速器传动系统的电动汽车性能在优化后有最大幅度的提升,安装此种传动系统的电动汽车也最具备能源经济性,碳排放最少;2)与传统的内燃机汽车性能相比较,电动汽车在能源经济性上显示出了非常显著的优势,但是在生命周期碳排放的体现上电动汽车没有显示出显著降低,这产生于中国目前电力系统对煤能源的重大依赖;3)汽车整车整备质量对电动汽车的能源消耗和碳排放性能有较大的影响,而转变汽车最大速度的要求对电动汽车的性能体现没有产生较大的影响。关键词:
【学位授予单位】:论文上海交通大学
【学位级别】:论文硕士
【学位授予年份】:论文2013
【分类号】:论文U469.72;X734.2
【目录】:论文摘要5-6
Abstract6-17
Nomenclature17-19
Chapter 1 INTRODUCTION19-34
1.1 Motivation for Research on Electric Vehicles19-21

1.1 Air pollution19-20

1.2 Global warming20

1.3 Fossil fuel resources20-21

1.2 Literature Review and Background Information21-30

1.2.1 EV development history22-23

1.2.2 EV development roadmap23-25

1.2.3 EV benefits25-26

1.2.4 EV challenges and solution26-29

1.2.5 New energy vehicles29-30

1.3 Research Objectives and Contributions30-33
1.3.1 Objectives for the pure electric two-wheel-drive vehicle31-32

1.3.2 Contributions32-33

1.4 Thesis Organization33-34

Chapter 2 OVERVIEW OF EV POWERTRAINTOPOLOGIES34-47
2.1 Introduction of Feasible EV Powertrain Topologies35-41
2.

1.1 Configuration of EVs35-37

2.

1.2 Powertrain topologies of EVs37-41

2.2 Evaluation of EV Powertrain Topologies41-46

2.1 Energy consumption41-44

2.2 Lifecycle GHG emission44-46

2.3 Summary46-47

Chapter 3 PERFORMANCE CALCULATION OFPOWERTRAIN COMPONENTS ANDMARKET INVESTIGATION47-79
3.1 Required Driving-wheels Performance Calculation50-56
3.1.1 Nominal driving-wheels performance50-53
3.1.2 Maximum driving-wheels performance53-55
3.1.3 Summary of driv论文导读:namics87-884.2.4Energystoragesubsystem88-914.2.5Energyconsumptionsubsystem91-1034.3ModelVapdationandCaseStudy103-1144.3.1Casestudy:NissanLeafelectricvehicle1034.3.2Vehiclesystemperformancecomparison103-1104.3.3Vehiclecomponentsperformancecomparisons110-1124.3.4Modelvapdati
ing-wheels performance requirements55-56
3.2 Required Traction Motor Performance Calculation56-73
3.2.1 Single motor drive with conventional layout57-64
3.2.2 Close-wheel drive (2× motor-twin motors)64-68
3.2.3 In-wheel drive with reducer (2×motor-twin motors)68-70
3.2.4 In-wheel drive without reducer (2×motor-twin motors)70-72
3.2.5 Summary of motor performance requirements72-73
3.3 EV Powertrain Topology Analysis in Domestic Market73-78

3.1 Market investigation73-74

3.3.2 Selection of motor from market supppers74-77

3.3 Market motor selection summary77-78

3.4 Summary78-79

Chapter 4 MODEL DEVELOPMENT AND VALIDATION79-115

4.1 Introduction of Vehicle Model79-81

4.2 Pure Electric Two-Wheel-Drive Vehicle Model Development81-103
4.

2.1 Driver model83-85

4.

2.2 Vehicle controller85-87

4.

2.3 Vehicle dynamics87-88

4.

2.4 Energy storage subsystem88-91

4.

2.5 Energy consumption subsystem91-103

4.3 Model Vapdation and Case Study103-114
4.3.1 Case study: Nissan Leaf electric vehicle103
4.3.2 Vehicle system performance comparison103-110
4.3.3 Vehicle components performance comparisons110-112
4.

3.4 Model vapdation summary112-114

4.4 Summary114-115
Chapter 5 EVALUATION AND OPTIMIZATION OF PEV-2WD POWERTRAIN TOPOLOGIES IN CHINESE MARKET115-169
5.1 Evaluation of PEV-2WD Powertrain Topologies in Chinese Market115-135
5.1.1 Single motor drive with conventional layout116-122
5.1.2 Close-wheel drive with twin motors122-129
5.1.3 In-wheel twin motors drive without reducer129-135
5.1.4 Conclusions for the powertrain study in Chinese market135

5.2 Optimization Methods135-138

5.

2.1 Appped Optimization algorithms135-138

5.2.2 General problem definition and formulation138
5.3 Optimization of PEV-2WD Powertrain Topologies in Chinese Market138-158
5.3.1 Problem definition and formulation138-141
5.3.2 Optimization results and analysis论文导读:fVehicleLoadonPowertrainPerformance170-1786.2.1Analysiethod170-1716.2.2Resultanddiscussion171-1786.3EfectsofVehicleMaximumSpeedonPowertrainPerformance178-1856.3.1Analysiethod1786.3.2Resultanddiscussion178-1856.4Summary185-186Chapter7CONCLUSIONSANDFUTUREWORK186-1907.1
141-157
5.3.3 Summary of EV performance with various powertrains157-158
5.4 Optimized Performance Comparison between EV and ICEV158-166
5.

4.1 ICEV model and optimization158-166

5.

4.2 Performance comparison166

5.5 Summary166-169
Chapter 6 POWERTRAIN PERFORMANCE SENSITIVITY ANALYSIS169-186
6.1 Introduction of Sensitivity Analysis170
6.2 Efects of Vehicle Load on Powertrain Performance170-178
6.

2.1 Analysis method170-171

6.

2.2 Result and discussion171-178

6.3 Efects of Vehicle Maximum Speed on Powertrain Performance178-185
6.

3.1 Analysis method178

6.

3.2 Result and discussion178-185

6.4 Summary185-186
Chapter 7 CONCLUSIONS AND FUTURE WORK186-190

7.1 Summary of Contributions186-188

7.2 Prospect of Future Work188-190

Acknowledgments190-191
Bibpography191-200